822 research outputs found

    Transcription Factors in Alkaloid Engineering

    Get PDF
    Plants produce a large variety of low-molecular-weight and specialized secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used in the pharmaceutical industry. Although alkaloid chemistry has been intensively investigated, characterization of alkaloid biosynthesis, including biosynthetic enzyme genes and their regulation, especially the transcription factors involved, has been relatively delayed, since only a limited number of plant species produce these specific types of alkaloids in a tissue/cell-specific or developmental-specific manner. Recent advances in molecular biology technologies, such as RNA sequencing, co-expression analysis of transcripts and metabolites, and functional characterization of genes using recombinant technology and cutting-edge technology for metabolite identification, have enabled a more detailed characterization of alkaloid pathways. Thus, transcriptional regulation of alkaloid biosynthesis by transcription factors, such as basic helix–loop–helix (bHLH), APETALA2/ethylene-responsive factor (AP2/ERF), and WRKY, is well elucidated. In addition, jasmonate signaling, an important cue in alkaloid biosynthesis, and its cascade, interaction of transcription factors, and post-transcriptional regulation are also characterized and show cell/tissue-specific or developmental regulation. Furthermore, current sequencing technology provides more information on the genome structure of alkaloid-producing plants with large and complex genomes, for genome-wide characterization. Based on the latest information, we discuss the application of transcription factors in alkaloid engineering

    Screening of isoquinoline alkaloids for potent lipid metabolism modulation with Caenorhabditis elegans.

    Get PDF
    Metabolic syndrome and related disorders are increasingly prevalent in contemporary society, and thus pose the need for potent agents to control lipid accumulation in the body. This study indicates that Caenorhabditis elegans was effective in screening for potent lipid metabolism modulators with berberine as a model compound. Among the various isoquinoline alkaloids tested, sanguinarine, a benzophenanthridine alkaloid, was found to be the most potent. Sanguinarine, like berberine, reduced lipid accumulation through AMP-activated protein kinase activation. Analysis of AMPK (aak-1 and aak-2) RNAi worms revealed that effects were aak-2-dependent. Characterization of worms with knockdown nhr-49, a hormone nuclear receptor gene that functions as a key regulator of fat consumption, showed that both alkaloids were effective even in these markedly lipid-accumulating nhr-49 RNAi worms, suggesting that they predominantly affect lipid synthesis, rather than fatty acid β-oxidation. The versatility of C. elegans for the purpose of lipid-modulating chemical screening and characterization of the underlying mechanisms is discussed

    Transgenerational lipid-reducing activity of benzylisoquinoline alkaloids in Caenorhabditis elegans

    Get PDF
    Epigenetic mechanisms allow for transgenerational memory of an ancestor's environment and can affect the gene expression, physiology and phenotype of that ancestor's descendants, independent of DNA sequence alteration. Among many model organisms, Caenorhabditis elegans has been instrumental in studies of transgenerational inheritance, most of which have focused on the effects of external stressors of the parent worm on the life span and stress resistance of future generations. In this work, we used Nile red staining of accumulated lipids in C. elegans to investigate the transgenerational effect of two benzylisoquinoline alkaloids, namely, berberine and sanguinarine. Our results showed that a reduction in Nile red fluorescence can be propagated to subsequent worm generations. Using mutant worms, we found that the transgenerational effect requires the ASH‐2 component of the histone H3K4me3 complex and the HRDE‐1 worm Argonaute protein. Ash‐2 is also required for transgenerational inheritance of the xenobiotic response in the worm. Our study offers new insights into transmissible drug effects across multiple generations and suggests the importance of such analyses in the drug development process

    Molecular characterization of O-methyltransferases involved in isoquinoline alkaloid biosynthesis in Coptis japonica

    Get PDF
    O-Methyltransferases, which catalyze the production of small molecules in plants, play a crucial role in determining biosynthetic pathways in secondary metabolism because of their strict substrate specificity. Using three O-methyltransferase (OMT) cDNAs that are involved in berberine biosynthesis, we investigated the structure that was essential for this substrate specificity and the possibility of creating a chimeric enzyme with novel substrate specificity. Since each OMT has a relatively well-conserved C-terminal putative S-adenosyl-L-methionine-binding domain, we first exchanged the N-terminal halves of different OMTs. Among the 6 combinations that we tested for creating chimeric OMTs, 5 constructs produced detectable amounts of recombinant proteins, and only one of these with an N-terminal half of 6-OMT and a C-terminal half of 4′-OMT (64′-OMT) showed methylation activity with isoquinoline alkaloids as a substrate. Further enzymological analysis of 64′-OMT reaction product indicated that 64′-OMT retained the regio-specificity of 6-OMT. Further examination of the N-terminal region of 64′-OMT showed that about 90 amino acid residues in the N-terminal half were critical for reaction specificity. The creation of OMTs with novel reactivity is discussed

    Genome-wide identification of AP2/ERF transcription factor-encoding genes in California poppy (Eschscholzia californica) and their expression profiles in response to methyl jasmonate

    Get PDF
    With respect to the biosynthesis of plant alkaloids, that of benzylisoquinoline alkaloids (BIAs) has been the most investigated at the molecular level. Previous investigations have shown that the biosynthesis of BIAs is comprehensively regulated by WRKY and bHLH transcription factors, while promoter analyses of biosynthesis enzyme-encoding genes have also implicated the involvement of members of the APETALA2/ethylene responsive factor (AP2/ERF) superfamily. To investigate the physiological roles of AP2/ERF transcription factors in BIA biosynthesis, 134 AP2/ERF genes were annotated using the draft genome sequence data of Eschscholzia californica (California poppy) together with transcriptomic data. Phylogenetic analysis revealed that these genes could be classified into 20 AP2, 5 RAV, 47 DREB, 60 ERF and 2 Soloist family members. Gene structure, conserved motif and orthologous analyses were also carried out. Gene expression profiling via RNA sequencing in response to methyl jasmonate (MeJA) indicated that approximately 20 EcAP2/ERF genes, including 10 group IX genes, were upregulated by MeJA, with an increase in the expression of the transcription factor-encoding gene EcbHLH1 and the biosynthesis enzyme-encoding genes Ec6OMT and EcCYP719A5. Further quantitative RT-PCR confirmed the MeJA responsiveness of the EcAP2/ERF genes, i.e., the increased expression of 9 group IX, 2 group X and 2 group III ERF subfamily genes. Transactivation activity of group IX EcAP2/ERFs was also confirmed by a luciferase reporter assay in conjunction with the promoters of the Ec6OMT and EcCYP719A5 genes. The physiological roles of AP2/ERF genes in BIA biosynthesis and their evolution in the regulation of alkaloid biosynthesis are discussed

    Genome-Wide Profiling of WRKY Genes Involved in Benzylisoquinoline Alkaloid Biosynthesis in California Poppy (Eschscholzia californica)

    Get PDF
    Transcription factors of the WRKY family play pivotal roles in plant defense responses, including the biosynthesis of specialized metabolites. Based on the previous findings of WRKY proteins regulating benzylisoquinoline alkaloid (BIA) biosynthesis, such as CjWRKY1—a regulator of berberine biosynthesis in Coptis japonica—and PsWRKY1—a regulator of morphine biosynthesis in Papaver somniferum—we performed genome-wide characterization of the WRKY gene family in Eschscholzia californica (California poppy), which produces various BIAs. Fifty WRKY genes were identified by homology search and classified into three groups based on phylogenetic, gene structure, and conserved motif analyses. RNA sequencing showed that several EcWRKY genes transiently responded to methyl jasmonate, a known alkaloid inducer, and the expression patterns of these EcWRKY genes were rather similar to those of BIA biosynthetic enzyme genes. Furthermore, tissue expression profiling suggested the involvement of a few subgroup IIc EcWRKYs in the regulation of BIA biosynthesis. Transactivation analysis using luciferase reporter genes harboring the promoters of biosynthetic enzyme genes indicated little activity of subgroup IIc EcWRKYs, suggesting that the transcriptional network of BIA biosynthesis constitutes multiple members. Finally, we investigated the coexpression patterns of EcWRKYs with some transporter genes and discussed the diversified functions of WRKY genes based on a previous finding that CjWRKY1 overexpression in California poppy cells enhanced BIA secretion into the medium

    Light energy allocation at PSII under field light conditions: How much energy is lost in NPQ-associated dissipation?

    Get PDF
    In the field, plants are exposed to fluctuating light, where photosynthesis occurs under conditions far from a steady state. Excess energy dissipation associated with energy quenching of chlorophyll fluorescence (qE) functions as an efficient photo-protection mechanism in photosystem II. PsbS is an important regulator of qE, especially for the induction phase of qE. Beside the regulatory energy dissipation, some part of energy is lost through relaxation of excited chlorophyll molecules. To date, several models to quantify energy loss through these dissipative pathways in PSII have been proposed. In this short review, we compare and evaluate these models for PSII energy allocation when they are applied to non-steady state photosynthesis. As a case study, an investigation on energy allocation to qE-associated dissipation at PSII under non-steady state photosynthesis using PsbS-deficient rice transformants is introduced. Diurnal and seasonal changes in PSII energy allocation in rice under natural light are also presented. Future perspective of studies on PSII energy allocation is discussed

    Localised surface plasmon resonance inducing cooperative Jahn–Teller effect for crystal phase-change in a nanocrystal

    Get PDF
    結晶中の電子の集団的な運動が原子を動かすプラズモン誘起原子変位を初めて発見 --見えない光学センサーなど新技術の実現に期待--. 京都大学プレスリリース. 2023-08-01.The Jahn–Teller effect, a phase transition phenomenon involving the spontaneous breakdown of symmetry in molecules and crystals, causes important physical and chemical changes that affect various fields of science. In this study, we discovered that localised surface plasmon resonance (LSPR) induced the cooperative Jahn–Teller effect in covellite CuS nanocrystals (NCs), causing metastable displacive ion movements. Electron diffraction measurements under photo illumination, ultrafast time-resolved electron diffraction analyses, and theoretical calculations of semiconductive plasmonic CuS NCs showed that metastable displacive ion movements due to the LSPR-induced cooperative Jahn–Teller effect delayed the relaxation of LSPR in the microsecond region. Furthermore, the displacive ion movements caused photo-switching of the conductivity in CuS NC films at room temperature (22 °C), such as in transparent variable resistance infrared sensors. This study pushes the limits of plasmonics from tentative control of collective oscillation to metastable crystal structure manipulation

    Significantly high polarization degree of the very low-albedo asteroid (152679) 1998 KU2_\mathrm{2}

    Full text link
    We present a unique and significant polarimetric result regarding the near-Earth asteroid (152679) 1998 KU2_\mathrm{2} , which has a very low geometric albedo. From our observations, we find that the linear polarization degrees of 1998 KU2_\mathrm{2} are 44.6 ±\pm 0.5\% in the RC_\mathrm{C} band and 44.0 ±\pm 0.6\% in the V band at a solar phase angle of 81.0\degr. These values are the highest of any known airless body in the solar system (i.e., high-polarization comets, asteroids, and planetary satellites) at similar phase angles. This polarimetric observation is not only the first for primitive asteroids at large phase angles, but also for low-albedo (< 0.1) airless bodies. Based on spectroscopic similarities and polarimetric measurements of materials that have been sorted by size in previous studies, we conjecture that 1998 KU2_\mathrm{2} has a highly microporous regolith structure comprising nano-sized carbon grains on the surface.Comment: 9 pages, 5 figures, and 3 tables, accepted for publication in A&
    corecore